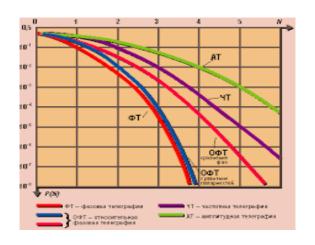
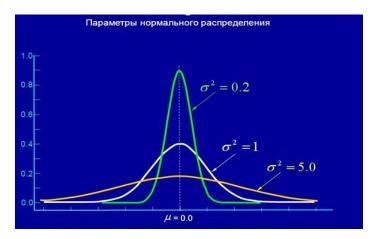
Регенератор и измеритель телеграфных искажений

Прием и передача дискретных сообщений по каналам радиосвязи происходит под воздействием различного рода аддитивных и мультипликативных помех. Для адаптации каналов к условиям связи необходимо постоянно оперативно определять качество этих каналов связи. Качество канала связи характеризуется вероятностью ошибок, которая зависит от отношения сигнал/помеха.

При использовании непосредственной оценки вероятности ошибок требуется уделить достаточно много времени, которое во многих случаях может превосходить время автокорреляции коэффициента передачи. Поскольку от отношения сигнал/помеха зависит не только вероятность ошибки, но и величина телеграфных искажений, то вероятность ошибок может быть оценена оперативно опосредованно путем оценки величины телеграфных искажений.

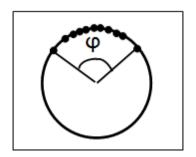
СРАВНЕНИЕ МЕТОДОВ ОЦЕНКИ КАЧЕСТВА КАНАЛА ПО ВЕРОЯТНОСТИ ОШИБОК И ПО ВЕЛИЧИНЕ ТЕЛЕГРАФНЫХ ИСКАЖЕНИЙ

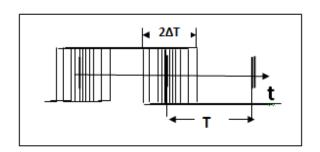

Для состоятельной оценки качества канала связи требуется, как минимум, 20 обнаруженных ошибок или 20 фронтов элементарных посылок.


При вероятности ошибок 10^{-2} требуется 2000 элементарных посылок. А при меньшей вероятности ошибок требуется еще большее их количество. Количество 20-ти фронтов элементарных посылок не зависит от вероятности ошибок и реализуется в среднем при приеме 40 элементарных посылок, т. е. в 50 раз меньше того количества, которое требуется при непосредственной оценке вероятности ошибок.

Время приема 2000 элементарных посылок при скорости манипуляции, например, 50 Бод равно 40 с, а время приема 40 элементарных посылок при этой же скорости манипуляции равно менее, чем 1 с.

СРЕДНЯЯ ВЕЛИЧИНА ТЕЛЕГРАФНЫХ ИСКАЖЕНИЙ (СВТИ)


Вероятность ошибки P_{om} определяется по формуле: $P_{om} = \frac{1}{2} e^{-\frac{h^2}{M}}$ где для AT M=4, для ЧТ M=2 и для ОФТ M=1


Способы измерений Телеграфных искажений (ТИ)

1. Измерение ТИ по углу разброса вектора круговой развертки

$$TH = (\phi^0/360^0) \cdot 100\%$$
.

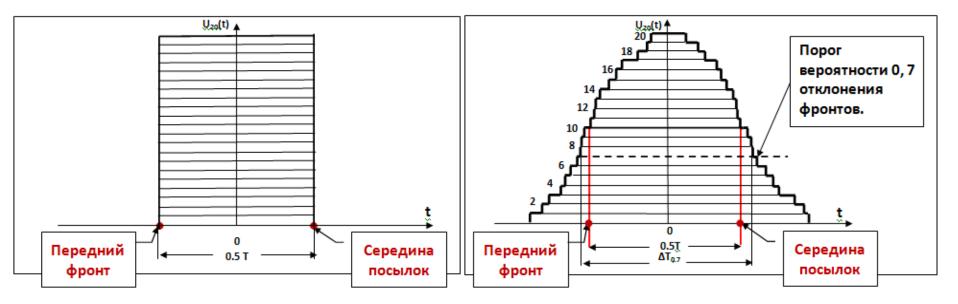
2. По разбросу фронтов относительно среднего положения.

$$TH = (\Delta T/T) \cdot 100\%$$
.

3. ПРИБОР ЭТИ-69 определяет результаты измерений, практически, такие же, как в п. 2. $TИ=3CKO_{AT/T}$

Средняя величина телеграфных искажений (СВТИ) элементарных посылок является процентным отношением среднего значения модуля отклонения фронтов элементарных посылок ΔT_{cp} от их среднего места положения на заданном интервале времени к длительности элемента сообщения Т.

CBTN=
$$\frac{\Delta T_{\rm cp}}{T}$$
100% = $\frac{\sum_{n=r}^{r+R}|\Delta T(n)|}{RT}$ 100%.


Здесь R — число фронтов элементарных посылок на заданном интервале времени (в скользящем окне).

Непосредственное измерение СВТИ в скользящем окне является проблематичной задачей. Однако возможно оценить СВТИ опосредовано с помощью оценки СКО $\sigma_{\Delta T}$ фронтов элементарных посылок от их среднего местоположения. Взаимосвязь ΔT_{cp} и СКО $\sigma_{\Delta T}$ случайной величины ΔT описывается выражением:

$$\Delta T_{\mathrm{cp}} = \sqrt{rac{2}{\pi}} \, \sigma_{\Delta T} = \mathbf{0}.\,\mathbf{798} \, \sigma_{\Delta T}$$

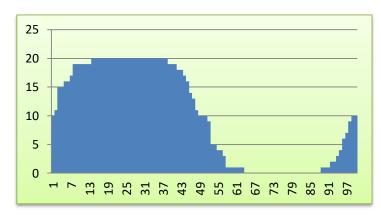
Таким образом, оценив значение СКО величины ΔT $\sigma_{\Delta T}$, можно оценить значение ΔT_{co} и СВТИ.

ОДНОПОЛЯРНЫЕ ГЕНЕРАТОРЫ

Зависимость напряжения на выходе первого сумматора при 20 формирователях последовательностей П – образных импульсов и при отсутствии телеграфных искажений

Зависимость напряжения на выходе первого сумматора при 20 формирователях последовательностей П – образных импульсов и при наличии телеграфных искажений

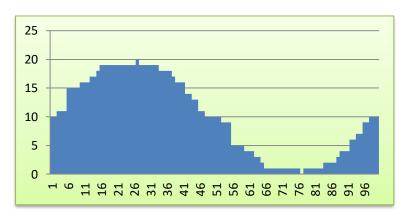
Алгоритм программы измерителя телеграфных искажений

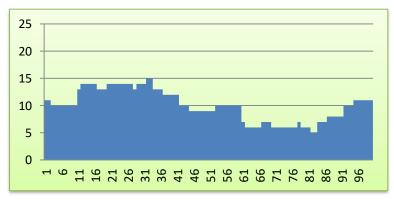

- 1. Определяется длительность импульса на выходе сумматора на уровне вероятности 0.7, $\Delta T_{0.7}$;
- 2. От этого значения отнимается половина длительности элементарной посылки. Эта разность является СКО телеграфных искажений: СКО = $\Delta T_{0.7}$ 0.5T;
- 3. Определяется среднее значение ΔT_{cp} путем умножения СКО на 0.798: $\Delta T_{cp} = 0.798 \cdot \text{СКО}$;
- 4. Определяется процентное значение СВТИ посредством деления ΔT_{cp} на длительность элементарной посылки T и умножения результата деления на 100: СВТИ% = $100 \cdot \Delta T_{cp}$ /T;
- 5. С учетом метода манипуляции определяется значение ошибки в соответствии с публикацией авторов [Косых А.В., Хазан В.Л. Способ оценки качества нестационарных каналов радиосвязи по величине телеграфных искажений. XI Международная IEEE научно-техническая конференция "Динамика систем, механизмов и машин", № 4, 2017, Омск. С. 28-33].

Однополярные генераторы

Таблица №1 – Данные, полученные с помощью программы

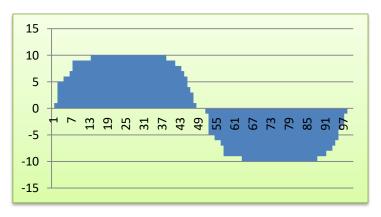
СВТИ %	9,5	19	33	50
СКО %	5	12	21	32
СКО % (прог.)	5	10	15	20
Рош	$1,62 \cdot 10^{-12}$	5,33 · 10 ⁻²	$17,1 \cdot 10^{-2}$	23,2 · 10 ⁻²


5% CKO

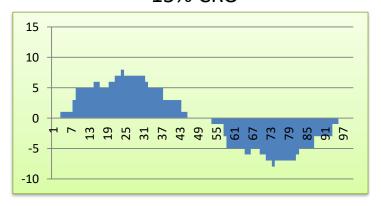

15% CKO

10% CKO

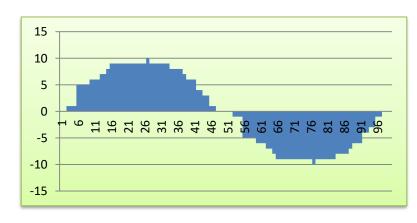
20% CKO

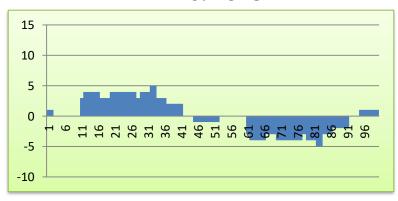


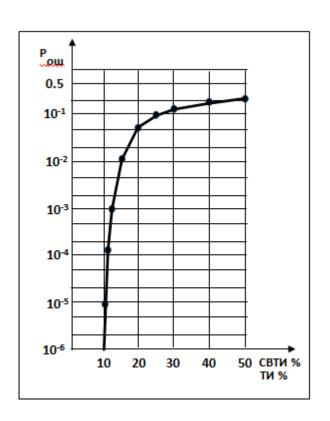
Двухполярные генераторы


Таблица №2 – Данные, полученные с помощью программы

СВТИ %	8	15	22	38
СКО %	5	10	14	24
СКО % (прог.)	5	10	15	20
Pom	$5,34 \cdot 10^{-12}$	2,11 · 10-2	$8,71 \cdot 10^{-2}$	19,2 · 10 ⁻²

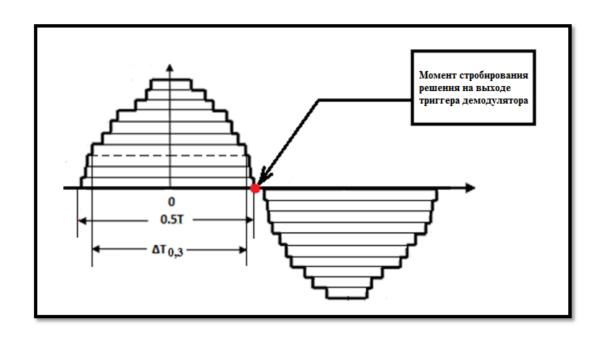

5% CKO


15% CKO


10% CKO

20% CKO

Зависимость вероятности ошибок в канале связи от СВТИ



СВТИ менее 12% соответствует вероятности ошибок менее 10⁻³, что можно оценить, как отличное состояние канала связи.

СВТИ более 25% соответствует вероятности ошибок более 10⁻¹, что можно оценить, как плохое состояние канала связи.

СВТИ на интервале от **12%** до **25%** соответствует значениям вероятности ошибок от **10**⁻¹ до **10**⁻³ и может считаться, как хорошее состояние канала связи.

Тактовая синхронизация

Выводы:

- Вероятность ошибки может быть оценена по средней величине телеграфных искажений с помощью программы, в течение долей секунды, что вполне приемлемо для канала связи, который работает в условии быстрых замираний.
- Измеритель телеграфных искажений может служить в качестве тактового синхронизатора.

СПАСИБО ЗА ВНИМАНИЕ!